4.6 Article

Experimental verification of the model by Klapper for 4H-SiC homoepitaxy on vicinal substrates

Journal

JOURNAL OF APPLIED PHYSICS
Volume 114, Issue 18, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.4829707

Keywords

-

Funding

  1. Bavarian Research Foundation (BFS) [AZ-720-06]

Ask authors/readers for more resources

4H-SiC homoepitaxial layers free of basal plane dislocations (BPDs) are urgently needed to overcome the so-called bipolar degradation of high-voltage devices. BPDs being present in substrates are able to either propagate to the epilayer or convert to harmless threading edge dislocations (TEDs) in the epilayer. The model by Klapper predicts the conversion of BPDs to TEDs to be more efficient for growth on vicinal substrates with low off-cut angle. This paper aims to verify the model by Klapper by an extensive variation of epitaxial growth parameters and the substrates' off-cut. It is shown that the off-cut angle is the key parameter for growth of BPD-free epilayers. Furthermore, it is shown that the model also describes adequately the behavior of different types of TEDs, i.e., TED II and TED III dislocations, during epitaxial growth. Therefore, the model by Klapper is verified successfully for 4H-SiC homoepitaxial growth on vicinal substrates. (C) 2013 AIP Publishing LLC.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available