4.6 Article Proceedings Paper

Local properties of the surface layer(s) of BiFeO3 single crystals

Journal

JOURNAL OF APPLIED PHYSICS
Volume 113, Issue 18, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.4801974

Keywords

-

Funding

  1. ICREA Funding Source: Custom

Ask authors/readers for more resources

The surface of BiFeO3 single crystals has been characterized at the local level using several AFM-based techniques. We have observed the presence of two different epilayers showing electrical and mechanical properties different from those of the bulk: a ferroelectrically dead outer skin of 5 nm sitting upon a subsurface layer that displays an extremely fine pattern of hierarchical self-ordered nanodomains. Based on the size of the nanodomains and applying a Kittel-like analysis, we argue that the nanotwinned region should be confined in a layer less than a micron deep. The superficial phase transition at T* = 275 degrees C is restricted to the outer skin layer (the dead layer), while the nanotwinned layer is insensitive to this transition. In view of the photovoltaic properties and spin-dependent transport of domain walls in BiFeO3, the existence of nanodomains (and thus a high density of domain walls) in bulk single crystals is likely to be relevant for understanding their functional properties. (C) 2013 AIP Publishing LLC

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available