4.6 Article

Temperature distributions in the laser-heated diamond anvil cell from 3-D numerical modeling

Journal

JOURNAL OF APPLIED PHYSICS
Volume 114, Issue 20, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.4830274

Keywords

-

Funding

  1. NSF [EAR-0969033]

Ask authors/readers for more resources

We present TempDAC, a 3-D numerical model for calculating the steady-state temperature distribution for continuous wave laser-heated experiments in the diamond anvil cell. TempDAC solves the steady heat conduction equation in three dimensions over the sample chamber, gasket, and diamond anvils and includes material-, temperature-, and direction-dependent thermal conductivity, while allowing for flexible sample geometries, laser beam intensity profile, and laser absorption properties. The model has been validated against an axisymmetric analytic solution for the temperature distribution within a laser-heated sample. Example calculations illustrate the importance of considering heat flow in three dimensions for the laser-heated diamond anvil cell. In particular, we show that a flat top input laser beam profile does not lead to a more uniform temperature distribution or flatter temperature gradients than a wide Gaussian laser beam. (C) 2013 AIP Publishing LLC.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available