4.8 Article

High-speed depolymerization at actin filament ends jointly catalysed by Twinfilin and Srv2/CAP

Journal

NATURE CELL BIOLOGY
Volume 17, Issue 11, Pages 1504-1511

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/ncb3252

Keywords

-

Categories

Funding

  1. NIH [GM063691]
  2. National Science Foundation [DMR-MRSEC-0820429]

Ask authors/readers for more resources

Purified actin filaments depolymerize slowly, and cytosolic conditions strongly favour actin assembly over disassembly, which has left our understanding of how actin filaments are rapidly turned over in vivo incomplete(1,2). One mechanism for driving filament disassembly is severing by factors such as Cofilin. However, even after severing, pointed-end depolymerization remains slow and unable to fully account for observed rates of actin filament turnover in vivo. Here we describe a mechanism by which Twinfilin and Cyclase-associated protein work in concert to accelerate depolymerization of actin filaments by 3-fold and 17-fold at their barbed and pointed ends, respectively. This mechanism occurs even under assembly conditions, allowing reconstitution and direct visualization of individual filaments undergoing tunable, accelerated treadmilling. Further, we use specific mutations to demonstrate that this activity is critical for Twinfilin function in vivo. These findings fill a major gap in our knowledge of cellular disassembly mechanisms, and suggest that depolymerization and severing may be deployed separately or together to control the dynamics and architecture of distinct actin networks.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available