4.6 Article

Adhesion and friction control localized folding in supported graphene

Journal

JOURNAL OF APPLIED PHYSICS
Volume 113, Issue 19, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.4804265

Keywords

-

Funding

  1. European Research Council under the European Community [240487]
  2. UPC
  3. prize ICREA Academia for excellence in research
  4. Generalitat de Catalunya

Ask authors/readers for more resources

Graphene deposited on planar surfaces often exhibits sharp and localized folds delimiting seemingly planar regions, as a result of compressive stresses transmitted by the substrate. Such folds alter the electronic and chemical properties of graphene, and therefore, it is important to understand their emergence, to either suppress them or control their morphology. Here, we study the emergence of out-of-plane deformations in supported and laterally strained graphene with high-fidelity simulations and a simpler theoretical model. We characterize the onset of buckling and the nonlinear behavior after the instability in terms of the adhesion and frictional material parameters of the graphene-substrate interface. We find that localized folds evolve from a distributed wrinkling linear instability due to the nonlinearity in the van der Waals graphene-substrate interactions. We identify friction as a selection mechanism for the separation between folds, as the formation of far apart folds is penalized by the work of friction. Our systematic analysis is a first step towards strain engineering of supported graphene, and is applicable to other compressed thin elastic films weakly coupled to a substrate. (C) 2013 AIP Publishing LLC.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available