4.6 Article

Properties of single crystalline AZn2Sb2 (A = Ca,Eu,Yb)

Journal

JOURNAL OF APPLIED PHYSICS
Volume 111, Issue 3, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.3681817

Keywords

-

Funding

  1. U. S. Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division
  2. U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences
  3. Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy
  4. U. S. Department of Energy, Office of Basic Energy Sciences, through the S3TEC Energy Frontier Research Center, Department of Energy [DESC0001299]

Ask authors/readers for more resources

Single crystals of CaZn2Sb2, EuZn2Sb2, and YbZn2Sb2 were grown from melts of nominal composition AZn(5)Sb(5) (A =Ca,Eu,Yb) with the excess melt being removed at 1073 K. The electrical transport properties are consistent with those previously reported for polycrystalline samples. This confirms that the p-type carrier concentrations ranging from 2 x 10(19) cm(-3) to similar to 1 x 10(20) cm(-3) are intrinsic to these materials. Also consistent with transport in polycrystalline materials, the carrier mobility is found to be lowest in CaZn2Sb2, suggesting the trends in mobility and thermoelectric efficiency within these compounds are inherent to the material systems and not due to inhomogeneity or impurities in polycrystalline samples. These results suggest CaZn2Sb2 has the strongest coupling between the doping/defects and the electronic framework. Magnetization measurements reveal an antiferromagnetic transition near 13 K in EuZn2Sb2, and the observed magnetic anisotropy indicates the spins align parallel and anti-parallel to c in the trigonal lattice. Powder neutron diffraction on polycrystalline samples of CaZn2Sb2 and YbZn2Sb2 reveals smooth lattice expansion to 1000 K, with c expanding faster than a. The Debye temperatures calculated from specific heat capacity data and the isotropic displacement parameters are found to correlate with the carrier mobility, with the CaZn2Sb2 displaying the largest Debye temperature and smallest mobility. (C) 2012 American Institute of Physics. [doi:10.1063/1.3681817]

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available