4.6 Article

Modeling of stochastic motion of bacteria propelled spherical microbeads

Journal

JOURNAL OF APPLIED PHYSICS
Volume 109, Issue 11, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.3592970

Keywords

-

Funding

  1. National Science Foundation [IIS-0713354]

Ask authors/readers for more resources

This work proposes a stochastic dynamic model of bacteria propelled spherical microbeads as potential swimming microrobotic bodies. Small numbers of S. marcescens bacteria are attached with their bodies to surfaces of spherical microbeads. Average-behavior stochastic models that are normally adopted when studying such biological systems are generally not effective for cases in which a small number of agents are interacting in a complex manner, hence a stochastic model is proposed to simulate the behavior of 8-41 bacteria assembled on a curved surface. Flexibility of the flagellar hook is studied via comparing simulated and experimental results for scenarios of increasing bead size and the number of attached bacteria on a bead. Although requiring more experimental data to yield an exact, certain flagellar hook stiffness value, the examined results favor a stiffer flagella. The stochastic model is intended to be used as a design and simulation tool for future potential targeted drug delivery and disease diagnosis applications of bacteria propelled microrobots. (C) 2011 American Institute of Physics. [doi:10.1063/1.3592970]

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available