4.8 Article

Differential responses to lithium in hyperexcitable neurons from patients with bipolar disorder

Journal

NATURE
Volume 527, Issue 7576, Pages 95-99

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/nature15526

Keywords

-

Funding

  1. National Natural Science Foundation of China [31471020, 31161120358, 31123004]
  2. National Basic Research Program of China [2015CB910603, 2011CB510106]
  3. Key Laboratory of Genomic and Precision Medicine, Chinese Academy of Sciences
  4. Engmann Foundation
  5. JPB Foundation
  6. Helmsley Trust
  7. Mather's Foundation
  8. Glenn Foundation for Aging Research
  9. National Institute of Health [MH106056]
  10. New York Stem Cell Foundation - Robertson Award
  11. National Institute of Mental Health [U01 MH92758]
  12. Department of Veterans Affairs [5I01CX000363]

Ask authors/readers for more resources

Bipolar disorder is a complex neuropsychiatric disorder that is characterized by intermittent episodes of mania and depression; without treatment, 15% of patients commit suicide(1). Hence, it has been ranked by the World Health Organization as a top disorder of morbidity and lost productivity(2). Previous neuropathological studies have revealed a series of alterations in the brains of patients with bipolar disorder or animal models', such as reduced glial cell number in the prefrontal cortex of patients(4), upregulated activities of the protein kinase A and C pathways(5-7) and changes in neurotransmission(8-11). However, the roles and causation of these changes in bipolar disorder have been too complex to exactly determine the pathology of the disease. Furthermore, although some patients show remarkable improvement with lithium treatment for yet unknown reasons, others are refractory to lithium treatment. Therefore, developing an accurate and powerful biological model for bipolar disorder has been a challenge. The introduction of induced pluripotent stem-cell (iPSC) technology has provided a new approach. Here we have developed an iPSC model for human bipolar disorder and investigated the cellular phenotypes of hippocampal dentate gyrus-like neurons derived from iPSCs of patients with bipolar disorder. Guided by RNA sequencing expression profiling, we have detected mitochondrial abnormalities in young neurons from patients with bipolar disorder by using mitochondrial assays; in addition, using both patch-clamp recording and somatic Ca2+ imaging, we have observed hyperactive action-potential firing. This hyperexcitability phenotype of young neurons in bipolar disorder was selectively reversed by lithium treatment only in neurons derived from patients who also responded to lithium treatment. Therefore, hyperexcitability is one early endophenotype of bipolar disorder, and our model of iPSCs in this disease might be useful in developing new therapies and drugs aimed at its clinical treatment.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available