4.6 Article

Mechanism of thermal conductivity reduction in few-layer graphene

Journal

JOURNAL OF APPLIED PHYSICS
Volume 110, Issue 4, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.3622300

Keywords

-

Funding

  1. Defense Advanced Research Projects Agency
  2. SPA-WAR Systems Center [N66001-09-C-2013]

Ask authors/readers for more resources

Using the linearized Boltzmann transport equation and perturbation theory, we analyze the reduction in the intrinsic thermal conductivity of few-layer graphene sheets accounting for all possible three-phonon scattering events. Even with weak coupling between layers, a significant reduction in the thermal conductivity of the out-of-plane acoustic modes is apparent. The main effect of this weak coupling is to open many new three-phonon scattering channels that are otherwise absent in graphene. However, reflection symmetry is only weakly broken with the addition of multiple layers, and out-of-plane acoustic phonons still dominate thermal conductivity. We also find that reduction in thermal conductivity is mainly caused by lower contributions of the higher-order overtones of the fundamental out-of-plane acoustic mode. The results compare remarkably well over the entire temperature range with measurements of graphene and graphite. (C) 2011 American Institute of Physics. [doi:10.1063/1.3622300]

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available