4.8 Article

Non-stabilized nucleophiles in Cu-catalysed dynamic kinetic asymmetric allylic alkylation

Journal

NATURE
Volume 517, Issue 7534, Pages 351-355

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/nature14089

Keywords

-

Funding

  1. EPSRC [EP/H003711/1]
  2. EPSRC [EP/H003711/1] Funding Source: UKRI
  3. Engineering and Physical Sciences Research Council [EP/H003711/1] Funding Source: researchfish

Ask authors/readers for more resources

The development of new reactions forming asymmetric carbon-carbon bonds has enabled chemists to synthesize a broad range of important carbon-containing molecules, including pharmaceutical agents, fragrances and polymers(1). Most strategies to obtain enantiomerically enriched molecules rely on either generating new stereogenic centres from prochiral substrates or resolving racemic mixtures of enantiomers. An alternative strategy dynamic kinetic asymmetric transformation involves the transformation of a racemic starting material into a single enantiomer product, with greater than 50 per cent maximum yield(2,3). The use of stabilized nudeophiles (pK(a) < 25, where K-a is the acid dissociation constant) in palladium-catalysed asymmetric allylic alkylation reactions has proved to be extremely versatile in these processes(4,5). Conversely, the use of non-stabilized nudeophiles in such reactions is difficult and remains a key challenge'. Here we report a copper-catalysed dynamic kinetic asymmetric transformation using racemic substrates and alkyl nudeophiles. These nudeophiles have a pK(a) of >= 50, more than 25 orders of magnitude more basic than the nudeophiles that are typically used in such transformations. Organometallic reagents are generated in situ from alkenes by hydrometallation and give highly enantioenriched products under mild reaction conditions. The method is used to synthesize natural products that possess activity against tuberculosis and leprosy, and an inhibitor of para-aminobenzoate biosynthesis. Mechanistic studies indicate that the reaction proceeds through a rapidly isomerizing intermediate. We anticipate that this approach will be a valuable complement to existing asymmetric catalytic methods.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available