4.6 Article

Photovoltaic devices based on high density boron-doped single-walled carbon nanotube/n-Si heterojunctions

Journal

JOURNAL OF APPLIED PHYSICS
Volume 109, Issue 1, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.3531112

Keywords

-

Funding

  1. DOE [DE-FG 36-06 GO 86072]
  2. Arkansas Science and Technology Authority (ASTA) [08-CAT-03]
  3. EPSCoR
  4. Office Of The Director [1003970] Funding Source: National Science Foundation

Ask authors/readers for more resources

A simple and easily processible photovoltaic device has been developed based on boron-doped single-walled carbon nanotubes (B-SWNTs) and n-type silicon (n-Si) heterojunctions. The SWNTs were substitutionally doped with boron atoms by thermal annealing, in the presence of B(2)O(3). The samples used for these studies were characterized by Raman spectroscopy, thermal gravimetric analysis, transmission electron microscopy, and x-ray photoelectron spectroscopy. The fully functional solar cell devices were fabricated by airbrush deposition that generated uniform B-SWNT films on top of the n-Si substrates. The carbon nanotube films acted as exciton-generation sites, charge collection, and transportation while the heterojunctions formed between B-SWNTs and n-Si acted as charge dissociation centers. The current-voltage characteristics in the absence of light and under illumination, as well as optical transmittance spectrum are reported here. It should be noted that the device fabrication process can be made amenable to scalability by depositing direct and uniform films using airbrushing, inkjet printing, or spin-coating techniques. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3531112]

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available