4.6 Article Proceedings Paper

Nonresonant feeding of photonic crystal nanocavity modes by quantum dots

Journal

JOURNAL OF APPLIED PHYSICS
Volume 109, Issue 10, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.3576137

Keywords

-

Ask authors/readers for more resources

We experimentally probe the nonresonant feeding of photons into the optical mode of a two dimensional photonic crystal nanocavity from the discrete emission from a quantum dot. For a strongly coupled system of a single exciton and the cavity mode, we track the detuning-dependent photoluminescence intensity of the exciton-polariton peaks at different lattice temperatures. At low temperatures we observe a clear asymmetry in the emission intensity depending on whether the exciton is at higher or lower energy than the cavity mode. At high temperatures this asymmetry vanishes when the probabilities to emit or absorb a phonon become similar. For a different dot-cavity system where the cavity mode is detuned by Delta E > 5 meV to lower energy than the single exciton transitions emission from the mode remains correlated with the quantum dot as demonstrated unambiguously by cross-correlation photon counting experiments. By monitoring the temporal evolution of the photoluminescence spectrum, we show that feeding of photons into the mode occurs from multi-exciton transitions. We observe a clear anti-correlation of the mode and single exciton emission; the mode emission quenches as the population in the system reduces toward the single exciton level while the intensity of the mode emission tracks the multi-exciton transitions. (C) 2011 American Institute of Physics. [doi:10.1063/1.35761371]

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available