4.8 Article

Gain-of-function p53 mutants co-opt chromatin pathways to drive cancer growth

Journal

NATURE
Volume 525, Issue 7568, Pages 206-+

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/nature15251

Keywords

-

Funding

  1. NIH [R01 CA078831, R01 GM069905]
  2. American Cancer Society
  3. ITMAT of the University of Pennsylvania
  4. AbbVie
  5. Bayer
  6. Boehringer Ingelheim
  7. Genome Canada through the Ontario Genomics Institute [OGI-055]
  8. GlaxoSmithKline
  9. Janssen
  10. Lilly Canada
  11. Merck
  12. Novartis Research Foundation
  13. Ontario Ministry of Economic Development and Innovation
  14. Pfizer
  15. Takeda
  16. Wellcome Trust [092809/Z/10/Z]
  17. Canadian Cancer Society Research Institute

Ask authors/readers for more resources

TP53 (which encodes p53 protein) is the most frequently mutated gene among all human cancers. Prevalent p53 missense mutations abrogate its tumour suppressive function and lead to a 'gain-of-function' (GOF) that promotes cancer. Here we show that p53 GOF mutants bind to and upregulate chromatin regulatory genes, including the methyltransferases MLL1 (also known as KMT2A), MLL2 (also known as KMT2D), and acetyltransferase MOZ (also known as KAT6A or MYST3), resulting in genome-wide increases of histone methylation and acetylation. Analysis of The Cancer Genome Atlas shows specific upregulation of MLL1, MLL2, and MOZ in p53 GOF patient-derived tumours, but not in wild-type p53 or p53 null tumours. Cancer cell proliferation is markedly lowered by genetic knockdown of MLL1 or by pharmacological inhibition of the MLL1 methyltransferase complex. Our study reveals a novel chromatin mechanism underlying the progression of tumours with GOF p53, and suggests new possibilities for designing combinatorial chromatin-based therapies for treating individual cancers driven by prevalent GOF p53 mutations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available