4.8 Article

GGGGCC repeat expansion in C9orf72 compromises nucleocytoplasmic transport

Journal

NATURE
Volume 525, Issue 7567, Pages 129-+

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/nature14974

Keywords

-

Funding

  1. Target ALS
  2. Packard Center for ALS Research at the Johns Hopkins University
  3. ALS Association
  4. ALS Therapy Alliance
  5. NIH [N079725, NS079725, AG019724]
  6. American-Lebanese-Syrian Associated Charities

Ask authors/readers for more resources

The GGGGCC (G(4)C(2)) repeat expansion in a noncoding region of C9orf72 is the most common cause of sporadic and familial forms of amyotrophic lateral sclerosis and frontotemporal dementia(1,2). The basis for pathogenesis is unknown. To elucidate the consequences of G(4)C(2) repeat expansion in a tractable genetic system, we generated transgenic fly lines expressing 8, 28 or 58 G(4)C(2)-repeat-containing transcripts that do not have a translation start site (AUG) but contain an open-reading frame for green fluorescent protein to detect repeat-associated non-AUG (RAN) translation. We show that these transgenic animals display dosage-dependent, repeat-length-dependent degeneration in neuronal tissues and RAN translation of dipeptide repeat (DPR) proteins, as observed in patients with C9orf72-related disease. This model was used in a large-scale, unbiased genetic screen, ultimately leading to the identification of 18 genetic modifiers that encode components of the nuclear pore complex (NPC), as well as the machinery that coordinates the export of nuclear RNA and the import of nuclear proteins. Consistent with these results, we found morphological abnormalities in the architecture of the nuclear envelope in cells expressing expanded G(4)C(2) repeats in vitro and in vivo. Moreover, we identified a substantial defect in RNA export resulting in retention of RNA in the nuclei of Drosophila cells expressing expanded G(4)C(2) repeats and also in mammalian cells, including aged induced pluripotent stem-cell-derived neurons from patients with C9orf72-related disease. These studies show that a primary consequence of G(4)C(2) repeat expansion is the compromise of nucleocytoplasmic transport through the nuclear pore, revealing a novel mechanism of neurodegeneration.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available