4.8 Article

Visible-frequency hyperbolic metasurface

Journal

NATURE
Volume 522, Issue 7555, Pages 192-196

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/nature14477

Keywords

-

Funding

  1. ONR-MURI [FA9550-12-1-0024]
  2. NSF-AMO [PHY-0969816]
  3. NSF-CUA [PHY-1125846]
  4. DARPA SPARQC [W31P4Q-12-1-0017]
  5. Direct For Mathematical & Physical Scien
  6. Division Of Physics [0969816] Funding Source: National Science Foundation
  7. Direct For Mathematical & Physical Scien
  8. Division Of Physics [1125846] Funding Source: National Science Foundation
  9. Div Of Electrical, Commun & Cyber Sys
  10. Directorate For Engineering [1541959] Funding Source: National Science Foundation

Ask authors/readers for more resources

Metamaterials are artificial optical media composed of subwavelength metallic and dielectric building blocks that feature optical phenomena not present in naturally occurring materials(1-7). Although they can serve as the basis for unique optical devices that mould the flow of light in unconventional ways, three-dimensional metamaterials suffer from extreme propagation losses(8,9). Two-dimensional metamaterials (metasurfaces) such as hyperbolic metasurfaces for propagating surface plasmon polaritons(10,11) have the potential to alleviate this problem. Because the surface plasmon polaritons are guided at a metal-dielectric interface (rather than passing through metallic components), these hyperbolic metasurfaces have been predicted to suffer much lower propagation loss while still exhibiting optical phenomena akin to those in three-dimensional metamaterials. Moreover, because of their planar nature, these devices enable the construction of integrated metamaterial circuits as well as easy coupling with other optoelectronic elements. Here we report the experimental realization of a visible-frequency hyperbolic metasurface using single-crystal silver nanostructures defined by lithographic and etching techniques. The resulting devices display the characteristic properties of metamaterials, such as negative refraction(1-5) and diffraction-free propagation(6,7), with device performance greatly exceeding those of previous demonstrations. Moreover, hyperbolic metasurfaces exhibit strong, dispersion-dependent spin-orbit coupling, enabling polarization-and wavelength-dependent routeing of surface plasmon polaritons and two-dimensional chiral optical components(12-15). These results open the door to realizing integrated optical meta-circuits, with wide-ranging applications in areas from imaging and sensing to quantum optics and quantum information science.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available