4.6 Article

Interpretation of admittance, capacitance-voltage, and current-voltage signatures in Cu(In,Ga)Se2 thin film solar cells

Journal

JOURNAL OF APPLIED PHYSICS
Volume 107, Issue 3, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.3277043

Keywords

buffer layers; cadmium compounds; copper compounds; dielectric relaxation; doping profiles; electric admittance; gallium compounds; II-VI semiconductors; indium compounds; Schottky barriers; semiconductor heterojunctions; solar cells; ternary semiconductors; thin film devices; wide band gap semiconductors

Funding

  1. European Commission [019680]

Ask authors/readers for more resources

A series of Cu(In,Ga)Se-2 (CIGS) thin film solar cells with differently prepared heterojunctions has been investigated by admittance spectroscopy, capacitance-voltage (CV) profiling, and temperature dependent current-voltage (IVT) measurements. The devices with different CdS buffer layer thicknesses, with an In2S3 buffer or with a Schottky barrier junction, all show the characteristic admittance step at shallow energies between 40 and 160 meV, which has often been referred to as the N1 defect. No correlation between the buffer layer thickness and the capacitance step is found. IVT measurements show that the dielectric relaxation frequency of charge carriers in the CdS layers is smaller than the N1-resonance frequency at low temperatures where the N1 step in admittance is observed. These results strongly contradict the common assignment of the N1 response to a donor defect at or close to the heterointerface. In contrast, an explanation for the N1 response is proposed, which relates the admittance step to a non-Ohmic back-contact acting as a second junction in the device. The model, which is substantiated with numerical device simulations, allows a unified explanation of characteristic admittance, CV, and IVT features commonly observed in CIGS solar cells.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available