4.6 Article

Lower limit to the lattice thermal conductivity of nanostructured Bi2Te3-based materials

Journal

JOURNAL OF APPLIED PHYSICS
Volume 106, Issue 7, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.3226884

Keywords

-

Funding

  1. Office of Naval Research [N00014-07-1-0190]
  2. U.S. Department of Energy [DE-FG02-07ER46453, DE-FG02-07ER46471, DE-AC02-06CH11357]

Ask authors/readers for more resources

We investigate the lower limit to the lattice thermal conductivity of Bi2Te3 and related materials using thin films synthesized by the method of elemental reactants. The thermal conductivities of single layer films of (Bi0.5Sb0.5)(2)Te-3 and multilayer films of (Bi2Te3)(m)(TiTe2)(n) and [(BixSb1-x)(2)Te-3](m)(TiTe2)(n) are measured by time-domain thermoreflectance; the thermal conductivity data are compared to our prior work on nanocrystalline Bi2Te3 and a Debye-Callaway model of heat transport by acoustic phonons. The homogeneous nanocrystalline films have average grain sizes 30 < d < 100 nm as measured by the width of the (003) x-ray diffraction peak. Multilayer films incorporating turbostratic TiTe2 enable studies of the effective thermal conductivity of Bi2Te3 layers as thin as 2 nm. In the limit of small grain size or layer thickness, the thermal conductivity of Bi2Te3 approaches the predicted minimum thermal conductivity of 0.31 W/m K. The dependence of the thermal conductivity on grain size is in good agreement with our Debye-Callaway model. The use of alloy (Bi, Sb)(2)Te-3 layers further reduces the thermal conductivity of the nanoscale layers to as low as 0.20 W/m K. (C) 2009 American Institute of Physics. [doi: 10.1063/1.3226884]

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available