4.6 Article

Size-selected agglomerates of SnO2 nanoparticles as gas sensors

Journal

JOURNAL OF APPLIED PHYSICS
Volume 106, Issue 8, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.3212995

Keywords

-

Funding

  1. ETH Zurich [FEL-04 08-3]
  2. Finnish Academy, Tekes (The Finnish National Technology Agency)
  3. Nanoprim

Ask authors/readers for more resources

The effect of nanoparticle structure on gas sensing performance is investigated. Size-selected nanostructured SnO2 agglomerate particles for gas sensors were made by scalable flame spray pyrolysis. These particles were polydisperse (up to 12) m in diameter) and consisted of primary particles of 10 nm in grain and crystal size as measured by transmission electron microscopy, x-ray diffraction, and Berner low pressure impactor (BLPI). The effect of agglomerate size on thermal stability and sensing of ethanol vapor (4-100 ppm) and CO (4-50 ppm) was investigated by selecting nearly monodisperse fractions of these agglomerates by the BLPI. Sensor layers made with these size-fractionated agglomerates exhibited higher thermal stability and dramatically enhanced sensitivity for both analytes than layers made with polydisperse agglomerates. This is attributed to their aggregate (or hard agglomerate) structure exhibiting small sinter necks between their constituent primary particles of tin dioxide that had also a narrow size distribution as expected for particles generated in flames. Upon further sintering of these optimally sized, nanostructured agglomerates, grain and neck growth degraded their superior sensitivity, supporting the proposed mechanism of their enhanced sensitivity: optimal primary particle necking. (C) 2009 American Institute of Physics. [doi: 10.1063/1.3212995]

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available