4.6 Article

Low energy photoelectron diffraction analysis at high angular resolution of Cu and Mn/Cu surfaces

Journal

JOURNAL OF APPLIED PHYSICS
Volume 106, Issue 9, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.3253329

Keywords

-

Ask authors/readers for more resources

X-ray photoelectron diffraction simulations using a real-space approach are Shown to accurately produce the extraordinarily detailed photoelectron diffraction pattern from Cu{111} at an electron kinetic energy of 523.5 eV. These same simulations show that most sensitivity is obtained when using low energy electrons at high angular resolution Structural differences are observed to be greatest around a kinetic energy of similar to 100 eV and many of the features observed in the photoelectron diffraction patterns may be directly related to phenomena observed in low energy electron diffraction patterns from the same Surface. For Cu{100}. simulations of buckled surfaces with a Mn overlayer predict that low energy photoelectron diffraction can easily discriminate chemical and structural differences. Even the effects of the relaxed Surface of Cu{100} is indeed observable along azimuthal scans around a kinetic energy of 100 eV Our results show that low energy photoelectron diffraction is extremely sensitive to changes in Surface Structure If high resolution patterns are acquired. (C) 2009 American Institute of Physics. [doi: 10.1063/1 3253329]

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available