4.6 Article

Trace gas measurements using optically resonant cavities and quantum cascade lasers operating at room temperature

Journal

JOURNAL OF APPLIED PHYSICS
Volume 104, Issue 9, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.3008014

Keywords

-

Funding

  1. German Research Foundation (DFG)

Ask authors/readers for more resources

Achieving the high sensitivity necessary for trace gas detection in the midinfrared molecular fingerprint region generally requires long absorption path lengths. In addition, for wider application, especially for field measurements, compact and cryogen free spectrometers are definitely preferable. An alternative approach to conventional linear absorption spectroscopy employing multiple pass cells for achieving high sensitivity is to combine a high finesse cavity with thermoelectrically (TE) cooled quantum cascade lasers (QCLs) and detectors. We have investigated the sensitivity limits of an entirely TE cooled system equipped with an similar to 0.5 m long cavity having a small sample volume of 0.3 1. With this spectrometer cavity enhanced absorption spectroscopy employing a continuous wave QCL emitting at 7.66 mu m yielded path lengths of 1080 m and a noise equivalent absorption of 2 x 10(-7) cm(-1) Hz(-1/2). The molecular concentration detection limit with a 20 s integration time was found to be 6 x 10(8) molecules/cm(3) for N2O and 2 x 10(9) molecules/cm(3) for CH4, which is good enough for the selective measurement of trace atmospheric constituents at 2.2 mbar. The main limiting factor for achieving even higher sensitivity, such as that found for larger volume multi pass cell spectrometers, is the residual mode noise of the cavity. On the other hand the application of TE cooled pulsed QCLs for integrated cavity output spectroscopy and cavity ring-down spectroscopy (CRDS) was found to be limited by the intrinsic frequency chirp of the laser. Consequently the accuracy and advantage of an absolute internal absorption calibration, in theory inherent for CRDS experiments, are not achievable. (c) 2008 American Institute of Physics. [DOI: 10.1063/1.3008014]

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available