4.6 Article

High-refractive-index TiO2-nanoparticle-loaded encapsulants for light-emitting diodes

Journal

JOURNAL OF APPLIED PHYSICS
Volume 103, Issue 8, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.2903484

Keywords

-

Ask authors/readers for more resources

A high-refractive-index (high-n) encapsulant is highly desirable because it can result in enhancement of light-extraction efficiency from high-n semiconductor light-emitting diode (LED) chips. A uniform dispersion of TiO2 nanoparticles in epoxy for LED encapsulation is demonstrated for surfactant-coated TiO2 nanoparticles by drying, mixing with a solvent, refluxing, centrifuging, and mixing with epoxy. The refractive index of surfactant-coated TiO2-nanoparticle-loaded epoxy is 1.67 at 500 nm, significantly higher than that of conventional epoxy (n=1.53). Theoretical analysis of optical scattering in nanoparticle-loaded encapsulants reveals that the diameter of nanoparticles and the volume loading fraction of nanoparticles are of critical importance for optical scattering. Quasispecular transparency of the encapsulant film can be achieved if the thickness of the film is kept below the optical scattering length. A graded-refractive-index multilayer encapsulation structure with the thickness of each layer being less than the mean optical scattering length is proposed in order to reduce optical losses from scattering and Fresnel reflection. Furthermore, three-dimensional optical ray-tracing simulations demonstrate that encapsulants with an optimized scattering coefficient, k(s), benefit from optical scattering by extracting deterministic trapped modes. Theoretical light-extraction enhancements larger than 50% are found when comparing scattering-free to scattering encapsulation materials. (C) 2008 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available