4.6 Article

Correlation between doping induced disorder and superconducting properties in carbohydrate doped MgB2

Journal

JOURNAL OF APPLIED PHYSICS
Volume 104, Issue 6, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.2980275

Keywords

-

Funding

  1. National Fusion Research Institute
  2. Korea Science and Engineering Foundation (KOSEF)
  3. Korean Government (MEST) [R01-2007-000-20462-0]
  4. National Research Foundation of Korea [R01-2007-000-20462-0] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

Ask authors/readers for more resources

A comprehensive study of the effects of carbohydrate doping on the superconductivity of MgB2 has been conducted. In accordance with the dual reaction model, more carbon substitution is achieved at lower sintering temperature. As the sintering temperature is lowered, lattice disorder is increased. Disorder is an important factor determining the transition temperature for the samples studied in this work, as evidenced from the correlations among the lattice strain, the resistivity, and the transition temperature. It is further shown that the increased critical current density in the high field region can be understood by a recently-proposed percolation model [M. Eisterer et al., Phys. Rev. Lett. 90, 247002 (2003)]. For the critical current density analysis, the upper critical field is estimated from a correlation that was reported in a recent review article [M. Eisterer, Supercond. Sci. Technol. 20, R47 (2007)], where a sharp increase in the upper critical field by doping is mainly due to an increase in lattice disorder or impurity scattering. On the other hand, it is shown that the observed reduction in self-held critical current density is related to the reduction in the pinning force density by carbohydrate doping. (C) 2008 American Institute of Physics. [DOI: 10.1063/1.2980275]

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available