4.6 Article

Internal stresses in TiN/Ti multilayer coatings deposited by large area filtered arc deposition

Journal

JOURNAL OF APPLIED PHYSICS
Volume 104, Issue 9, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.3006136

Keywords

-

Funding

  1. The United States Army Telemedicine and Advanced Technology Research Center (TATRC), U. S. Army Medical Research and Material Command [W81XWH-08-2-0023]

Ask authors/readers for more resources

A series of TiN/Ti multilayer coatings with fixed TiN layer thickness and different Ti layer thicknesses were deposited using a large area filtered arc deposition technique. X-ray diffraction was used to investigate the crystalline structure, lattice strain, and crystallinity of the deposited coatings. A substrate curvature method was used to measure the internal stress in the multilayer coatings. The influence of the Ti interlayer thickness on the crystalline structure and internal stress in the coatings was systematically studied. It was found that a cubic TiN phase and hexagonal Ti phase exist in all the multilayer coatings. The TiN and Ti layers in the multilayer coatings exhibit a strong (111) and (002) preferred orientation, respectively. With the increase in the Ti layer thickness, the d-spacing decreases and the peak width increases for both TiN (111) and Ti (002) peaks, indicating a decrease in the lattice strain and an increase in the crystallinity of both TiN and Ti phases. It is suggested, that the reduction in the defect density in both TiN and Ti layers and the relaxation of the stain by the diffusion of the Ti atoms in the underneath Ti layer contribute to the decrease in the total internal stress with increasing Ti layer thickness. (c) 2008 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available