4.4 Article

Trends in Storm-Triggered Landslides over Southern California

Journal

JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY
Volume 53, Issue 2, Pages 217-233

Publisher

AMER METEOROLOGICAL SOC
DOI: 10.1175/JAMC-D-12-0253.1

Keywords

-

Ask authors/readers for more resources

Changes in storm-triggered landslide activity for Southern California in a future warming climate are estimated using an advanced, fully three-dimensional, process-based landslide model, the Scalable and Extensible Geofluid Modeling System for landslides (SEGMENT-Landslide). SEGMENT-Landslide is driven by extreme rainfall projections from the Geophysical Fluid Dynamics Laboratory High Resolution Atmospheric Model (GFDL-HIRAM). Landslide changes are derived from GFDL-HIRAM forcing for two periods: 1) the twentieth century (CNTRL) and 2) the twenty-first century under the moderate Intergovernmental Panel on Climate Change Special Report on Emissions Scenarios A1B enhanced greenhouse gas emissions scenario (EGHG). Here, differences are calculated in landslide frequency and magnitude between the CNTRL and EGHG projections; kernel density estimation (KDE) is used to determine differences in projected landslide locations. This study also reveals that extreme precipitation events in Southern California are strongly correlated with several climate drivers and that GFDL-HIRAM simulates well the southern (relative to Aleutian synoptic systems) storm tracks in El Nino years and the rare (similar to 27-yr recurrence period) hurricane-landfalling events. GFDL-HIRAM therefore can provide satisfactory projections of the geographical distribution, seasonal cycle, and interannual variability of future extreme precipitation events (>50 mm) that have possible landslide consequences for Southern California. Although relatively infrequent, extreme precipitation events contribute most of the annual total precipitation in Southern California. Two findings of this study have major implications for Southern California. First is a possible increase in landslide frequency and areal distribution during the twenty-first century. Second, the KDE reveals three clusters in both the CNTRL and EGHG model mean scarp positions, with a future eastward (inland) shift of similar to 0.5 degrees and a northward shift of similar to 1 degrees. These findings suggest that previously stable areas might become susceptible to storm-triggered landslides in the twenty-first century.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available