4.3 Article

Genome-wide identification of genes involved in tolerance to various environmental stresses in Saccharomyces cerevisiae

Journal

JOURNAL OF APPLIED GENETICS
Volume 50, Issue 3, Pages 301-310

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/BF03195688

Keywords

alcohol tolerance; genome-wide screening; heat stress; osmolarity; oxidative stress; Saccharomyces cerevisiae

Funding

  1. Thailand Research Fund [MRG4980127]
  2. Commission on Higher Education
  3. National Research Council of Thailand
  4. National Science and Technology Development Agency of Thailand
  5. Ministry of Education, Culture, Sports, Science and Technology, Japan

Ask authors/readers for more resources

During fermentation, yeast cells are exposed to a number of stresses - such as high alcohol concentration, high osmotic pressure, and temperature fluctuation - so some overlap of mechanisms involved in the response to these stresses has been suggested. To identify the genes required for tolerance to alcohol (ethanol, methanol, and 1-propanol), heat, osmotic stress, and oxidative stress, we performed genome-wide screening by using 4828 yeast deletion mutants. Our screens identified 95, 54, 125, 178, 42, and 30 deletion mutants sensitive to ethanol, methanol, I-propanol, heat, NaCl, and H2O2, respectively. These deleted genes were then classified based on their cellular functions, and cross-sensitivities between stresses were determined. A large number of genes involved in vacuolar H+-ATPase (V-ATPase) function, cytoskeleton biogenesis, and cell wall integrity, were required for tolerance to alcohol, suggesting their protective role against alcohol stress. Our results revealed a partial overlap between genes required for alcohol tolerance and those required for thermotolerance. Genes involved in cell wall integrity and the actin cytoskeleton are required for both alcohol tolerance and thermotolerance, whereas the RNA polymerase I I mediator complex seems to be specific to heat tolerance. However, no significant overlap of genes required for osmotic stress and oxidative stress with those required for other stresses was observed. Interestingly, although mitochondrial function is likely involved in tolerance to several stresses, it was found to be less important for thermotolerance. The genes identified in this study should be helpful for future research into the molecular mechanisms of stress response.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available