4.4 Article

Durability of carbon-supported manganese oxide nanoparticles for the oxygen reduction reaction (ORR) in alkaline medium

Journal

JOURNAL OF APPLIED ELECTROCHEMISTRY
Volume 38, Issue 9, Pages 1195-1201

Publisher

SPRINGER
DOI: 10.1007/s10800-008-9537-z

Keywords

oxygen reduction reaction; rotating ring-disc electrode; carbon-supported manganese oxide; nickel doping; durability

Ask authors/readers for more resources

MnO(x)/C-based electrocatalysts, prepared by the chemical deposition of manganese oxide nanoparticles on carbon, were tested towards the Oxygen Reduction Reaction (ORR) in their as-synthesized state and after ageing, either in ambient air for a year (mild ageing) or in an O(2)-saturated molar KOH solution at 80 degrees C for three weeks (premature ageing). For each electrocatalyst, the morphology and composition were characterised using TEM, XRD and chemical analysis. ORR kinetic parameters were evaluated using the Rotating Disk Electrode (RDE) and Rotating Ring Disk Electrode (RRDE) setups. Whilst the oxygen reduction activity of the electrocatalysts barely changes after mild ageing, it decreases after premature ageing following dramatic modifications to both the chemical and crystalline structures of the carbon-supported MnO(x) nanoparticles. The peroxide yield also sharply increases after premature ageing. Doping MnO(x)/C with nickel or magnesium divalent cations is beneficial since it improves both the catalytic activity and selectivity towards the 4-electron ORR pathway, even after ageing.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available