4.4 Article Proceedings Paper

Tape casting of proton conducting ceramic material

Journal

JOURNAL OF APPLIED ELECTROCHEMISTRY
Volume 39, Issue 4, Pages 485-495

Publisher

SPRINGER
DOI: 10.1007/s10800-008-9671-7

Keywords

PCFC; Protonic conductor; Tape-casting; Sintering; Microtomography

Ask authors/readers for more resources

This work explores experimental procedures for tape-cast proton conducting ceramic fuel cells (PCFC) based on Yttrium-doped Barium Cerate (BCY10). The work is based on several years experience on aqueous tape-casting applied to the shaping of YSZ-based SOFC: however, water-based tape casting of BCY10 appeared to be impracticable for reasons associated with the high basicity of this material that results in rapid hydrolysis when in contact with water. Organic tape casting was therefore developed for BCY10, but only on Electrolyte (BCY10)/Anode (BCY10 + NiO) half cells since up to now no cathode material is available. Planar 20 mm diameter circular half-cells were obtained with the aid of a small load on top of the bi-layer to counterbalance the inevitable warping of the samples. Back-scattered SEM and X-Ray computer-controlled microtomography showed sedimentation of some large grains in the green tapes which are believed to have formed by a mechanism associated with a porosity gradient. The deformation occurring during sintering was modelled taking into account the elastic, thermal, viscoplastic and sintering components of the total deformation. 2D and 3D Finite Element numerical simulations showed that the driving force for deformation is associated with this porosity gradient.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available