4.5 Article

Three-dimensional rotation electron diffraction: software RED for automated data collection and data processing

Journal

JOURNAL OF APPLIED CRYSTALLOGRAPHY
Volume 46, Issue -, Pages 1863-1873

Publisher

INT UNION CRYSTALLOGRAPHY
DOI: 10.1107/S0021889813027714

Keywords

-

Funding

  1. Swedish Research Council (VR)
  2. Swedish Governmental Agency for Innovation Systems (VINNOVA)
  3. Goran Gustafsson Foundation
  4. Knut and Alice Wallenberg Foundation [3DEM-NATUR]
  5. Knut and Alice Wallenberg Foundation

Ask authors/readers for more resources

Implementation of a computer program package for automated collection and processing of rotation electron diffraction (RED) data is described. The software package contains two computer programs: RED data collection and RED data processing. The RED data collection program controls the transmission electron microscope and the camera. Electron beam tilts at a fine step (0.05-0.20 degrees) are combined with goniometer tilts at a coarse step (2.0-3.0 degrees) around a common tilt axis, which allows a fine relative tilt to be achieved between the electron beam and the crystal in a large tilt range. An electron diffraction (ED) frame is collected at each combination of beam tilt and goniometer tilt. The RED data processing program processes three-dimensional ED data generated by the RED data collection program or by other approaches. It includes shift correction of the ED frames, peak hunting for diffraction spots in individual ED frames and identification of these diffraction spots as reflections in three dimensions. Unit-cell parameters are determined from the positions of reflections in three-dimensional reciprocal space. All reflections are indexed, and finally a list with hkl indices and intensities is output. The data processing program also includes a visualizer to view and analyse three-dimensional reciprocal lattices reconstructed from the ED frames. Details of the implementation are described. Data collection and data processing with the software RED are demonstrated using a calcined zeolite sample, silicalite-1. The structure of the calcined silicalite-1, with 72 unique atoms, could be solved from the RED data by routine direct methods.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available