4.5 Article

HipGISAXS: a high-performance computing code for simulating grazing-incidence X-ray scattering data

Journal

JOURNAL OF APPLIED CRYSTALLOGRAPHY
Volume 46, Issue -, Pages 1781-1795

Publisher

INT UNION CRYSTALLOGRAPHY
DOI: 10.1107/S0021889813025843

Keywords

-

Funding

  1. Office of Science, of the US Department of Energy [DE-AC02-05CH11231, DE-AC05-00OR22725]
  2. Office of Science, Office of Basic Energy Sciences, of the US Department of Energy [DE-AC02-05CH11231]

Ask authors/readers for more resources

This article describes the development of a flexible grazing-incidence small-angle X-ray scattering (GISAXS) simulation code in the framework of the distorted wave Born approximation that effectively utilizes the parallel processing power provided by graphics processors and multicore processors. The code, entitled High-Performance GISAXS, computes the GISAXS image for any given superposition of user-defined custom shapes or morphologies in a material and for various grazing-incidence angles and sample orientations. These capabilities permit treatment of a wide range of possible sample structures, including multilayered polymer films and nanoparticles on top of or embedded in a substrate or polymer film layers. In cases where the material displays regions of significant refractive index contrast, an algorithm has been implemented to perform a slicing of the sample and compute the averaged refractive index profile to be used as the reference geometry of the unperturbed system. A number of case studies are presented, which demonstrate good agreement with the experimental data for a variety of polymer and hybrid polymer/nanoparticle composite materials. The parallelized simulation code is well suited for addressing the analysis efforts required by the increasing amounts of GISAXS data being produced by high-speed detectors and ultrafast light sources.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available