4.5 Article

Building and refining complete nanoparticle structures with total scattering data

Journal

JOURNAL OF APPLIED CRYSTALLOGRAPHY
Volume 44, Issue -, Pages 327-336

Publisher

INT UNION CRYSTALLOGRAPHY
DOI: 10.1107/S0021889811001968

Keywords

nanoparticles; total scattering data; whole-particle modeling; pair distribution functions

Funding

  1. US DOE Office of Basic Energy Sciences
  2. DOE [DE-AC52-06NA25396]

Ask authors/readers for more resources

High-energy X-ray and spallation neutron total scattering data provide information about each pair of atoms in a nanoparticle sample, allowing for quantitative whole-particle structural modeling based on pair distribution function analysis. The realization of this capability has been hindered by a lack of versatile tools for describing complex finite structures. Here, the implementation of whole-particle refinement for complete nanoparticle systems is described within two programs, DISCUS and DIFFEV, and the diverse capabilities they present are demonstrated. The build-up of internal atomic structure (including defects, chemical ordering and other types of disorder), and nanoparticle size, shape and architecture (including core-shell structures, surface relaxation and ligand capping), are demonstrated using the program DISCUS. The structure refinement of a complete nanoparticle system (4 nm Au particles with organic capping ligands at the surface), based on neutron pair distribution function data, is demonstrated using DIFFEV, a program using a differential evolutionary algorithm to generate parameter values. These methods are a valuable addition to other probes appropriate for nanomaterials, adaptable to a diverse and complex set of materials systems, and extendable to additional data-set types.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available