4.5 Article

Semi-automated protein crystal mounting device for the sulfur single-wavelength anomalous diffraction method

Journal

JOURNAL OF APPLIED CRYSTALLOGRAPHY
Volume 43, Issue -, Pages 341-346

Publisher

INT UNION CRYSTALLOGRAPHY
DOI: 10.1107/S0021889809054272

Keywords

-

Funding

  1. Ministry of Education, Culture, Sports, Science and Technology, Japan

Ask authors/readers for more resources

Use of longer-wavelength X-rays has advantages for the detection of small anomalous signals from light atoms, such as sulfur, in protein molecules. However, the accuracy of the measured diffraction data decreases at longer wavelengths because of the greater X-ray absorption. The capillary-top mounting method (formerly the loopless mounting method) makes it possible to eliminate frozen solution around the protein crystal and reduces systematic errors in the evaluation of small anomalous differences. However, use of this method requires custom-made tools and a large amount of skill. Here, the development of a device that can freeze the protein crystal semi-automatically using the capillary-top mounting method is described. This device can pick up the protein crystal from the crystallization drop using a micro-manipulator, and further procedures, such as withdrawal of the solution around the crystal by suction and subsequent flash freezing of the protein crystal, are carried out automatically. This device makes it easy for structural biologists to use the capillary-top mounting method for sulfur single-wavelength anomalous diffraction phasing using longer-wavelength X-rays.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available