4.5 Article

The use of blue native PAGE in the evaluation of membrane protein aggregation states for crystallization

Journal

JOURNAL OF APPLIED CRYSTALLOGRAPHY
Volume 41, Issue -, Pages 1150-1160

Publisher

INT UNION CRYSTALLOGRAPHY
DOI: 10.1107/S0021889808033797

Keywords

-

Funding

  1. Intramural Research Program of the National Institutes of Health
  2. National Cancer Institute
  3. Center for Cancer Research

Ask authors/readers for more resources

Crystallization has long been one of the bottlenecks in obtaining structural information at atomic resolution for membrane proteins. This is largely due to difficulties in obtaining high-quality protein samples. One frequently used indicator of protein quality for successful crystallization is the monodispersity of proteins in solution, which is conventionally obtained by size exclusion chromatography ( SEC) or by dynamic light scattering (DLS). Although useful in evaluating the quality of soluble proteins, these methods are not always applicable to membrane proteins either because of the interference from detergent micelles or because of the requirement for large sample quantities. Here, the use of blue native polyacrylamide gel electrophoresis (BN-PAGE) to assess aggregation states of membrane protein samples is reported. A strong correlation is demonstrated between the monodispersity measured by BN-PAGE and the propensity for crystallization of a number of soluble and membrane protein complexes. Moreover, it is shown that there is a direct correspondence between the oligomeric states of proteins as measured by BN-PAGE and those obtained from their crystalline forms. When applied to a membrane protein with unknown structure, BN-PAGE was found to be useful and efficient for selecting well behaved proteins from various constructs and in screening detergents. Comparisons of BN-PAGE with DLS and SEC are provided. (C) 2008 International Union of Crystallography Printed in Singapore - all rights reserved

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available