4.7 Article

Mapping quantitative trait loci for feed consumption and feeding behaviors in a White Duroc x Chinese Erhualian resource population

Journal

JOURNAL OF ANIMAL SCIENCE
Volume 87, Issue 11, Pages 3458-3463

Publisher

OXFORD UNIV PRESS INC
DOI: 10.2527/jas.2008-1694

Keywords

feed intake; feeding behavior; pig; quantitative trait locus

Funding

  1. Natural Science Foundation of China [30425045]
  2. New Century Excellent Talents in University

Ask authors/readers for more resources

To identify QTL for feed consumption and feeding behavior traits in pigs, ADFI, feed conversion ratio (FCR), number of visits to the feeder per day (NVD), and average feeding rate (AFR) were recorded in 577 F-2 animals from a White Duroc x Chinese Erhualian resource population during the fattening period of 120 to 240 d. A whole genome scan was performed with 183 microsatellites covering the pig genome across the entire resource population. A total of 8 QTL were identified on 5 pig chromosomes, including 3 genome-wide significant QTL for FCR on SSC2, 7, and 9, 1 significant QTL for ADFI on SSC3, and 1 for NVD on SSC7. These QTL were identified for the first time, except for the QTL for FCR on SSC2. Four of the 5 significant QTL were adjacent to the known QTL for growth, carcass, and fat deposition traits, supporting the existence of gene(s) with pleiotropic effects on these traits. White Duroc alleles were generally associated with greater phenotypic values, except for those on SSC7 and 9. Comparison of QTL for feed consumption and feeding behaviors indicated that distinct chromosomes had effects on the 2 types of traits. Characterization of causative gene(s) underlying the identified QTL would shed new light on the genetic basis of feed consumption and feeding behaviors in pigs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available