4.6 Article

Trait-mediated functional responses: predator behavioural type mediates prey consumption

Journal

JOURNAL OF ANIMAL ECOLOGY
Volume 83, Issue 6, Pages 1469-1477

Publisher

WILEY
DOI: 10.1111/1365-2656.12236

Keywords

animal personality; behavioural syndrome; boldness; Crassostrea virginica; food web; interaction strength; oyster reef

Funding

  1. NSF [DGE-0929297, OCE-1129166]
  2. Division Of Ocean Sciences
  3. Directorate For Geosciences [1129166] Funding Source: National Science Foundation

Ask authors/readers for more resources

The predator functional response (i.e. per capita consumption rate as a function of prey density) is central to our understanding of predator-prey population dynamics. This response is behavioural, depending on the rate of attack and time it takes to handle prey. Consistent behavioural differences among conspecific individuals, termed behavioural types, are a widespread feature of predator and prey populations but the effects of behavioural types on the functional response remain unexplored. We tested the effects of crab (Panopeus herbstii) behavioural type, specifically individual activity level, on the crab functional response to mussel (Brachidontes exustus) prey. We further tested whether the effects of activity level on the response are mediated by the presence of toadfish (Opsanus tau) predation threat in the form of waterborne chemical cues known to reduce crab activity level. The effects of crab activity level on the functional response were dependent on crab body size. Individual activity level increased the magnitude (i.e. slope and asymptote) of the type II functional response of small crabs, potentially through an increase in time spent foraging, but had no effect on the functional response of large crabs. Predation threat did not interact with activity level to influence mussel consumption, but independently reduced the slope of the type II functional response. Overall, this study demonstrates size-specific effects of a behavioural type on a predator-prey interaction, as well as a general pathway (modification of the functional response) by which the effects of individual behavioural types can scale up to influence predator-prey population dynamics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available