4.3 Article

Functional anatomy of the cheetah (Acinonyx jubatus) forelimb

Journal

JOURNAL OF ANATOMY
Volume 218, Issue 4, Pages 375-385

Publisher

WILEY
DOI: 10.1111/j.1469-7580.2011.01344.x

Keywords

Acinonyx; anatomy; cheetah; forelimb; locomotion; muscle; speed

Funding

  1. Biotechnology and Biological Sciences Research Council [S20242] Funding Source: researchfish

Ask authors/readers for more resources

Despite the cheetah being the fastest living land mammal, we know remarkably little about how it attains such high top speeds (29 m s-1). Here we aim to describe and quantify the musculoskeletal anatomy of the cheetah forelimb and compare it to the racing greyhound, an animal of similar mass, but which can only attain a top speed of 17 m s-1. Measurements were made of muscle mass, fascicle length and moment arms, enabling calculations of muscle volume, physiological cross-sectional area (PCSA), and estimates of joint torques and rotational velocities. Bone lengths, masses and mid-shaft cross-sectional areas were also measured. Several species differences were observed and have been discussed, such as the long fibred serratus ventralis muscle in the cheetah, which we theorise may translate the scapula along the rib cage (as has been observed in domestic cats), thereby increasing the cheetah's effective limb length. The cheetah's proximal limb contained many large PCSA muscles with long moment arms, suggesting that this limb is resisting large ground reaction force joint torques and therefore is not functioning as a simple strut. Its structure may also reflect a need for control and stabilisation during the high-speed manoeuvring in hunting. The large digital flexors and extensors observed in the cheetah forelimb may be used to dig the digits into the ground, aiding with traction when galloping and manoeuvring.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available