4.7 Article

In situ and ex situ spectroscopic monitoring of biochar's surface functional groups

Journal

JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS
Volume 102, Issue -, Pages 53-59

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jaap.2013.03.014

Keywords

Pyrolysis; Biomass; Thermochemical conversion; Volatile matter; Soil amendment

Ask authors/readers for more resources

A number of studies concluded that peak pyrolysis temperature determines essential biochar properties: surface functional group, fixed carbon content, O/C, H/C, and BET surface area. Chemical (most importantly oxygen-containing surface functionalities), rather than physical (surface area) property of biochar dictates its ability to stabilize heavy metals in soil. Labile carbon fraction of biochar is rich in heavy metal coordinating functionalities, and recalcitrant carbon fraction is necessary for the long-term stability in soil. To produce desirable biochar properties With minimal time and cost, the slow pyrolysis platform must be optimized not only for the peak temperature, but additional parameters including the residence time and heating rate. In this study, time courses of biomass slow pyrolysis were investigated in the real time using a time-resolved (0.5 s) in situ Diffuse Reflectance Infrared Fourier Transform (DRIFTs) to continuously monitor the changes in surface functionality. The greatest change in surface functionality was observed at 200-500 degrees C from both in situ DRIFTs (during heating up at 10 degrees C min(-1) to reach the peak temperature) as well as ex situ (after a set residence time at the peak temperature) proximate, ultimate, attenuated total reflectance (ATR)-FTIR, and H-1 NMR analyses of slow/fast pyrolysis and activated biochars. The FTIR spectral features at respective temperatures during in situ pyrolysis of lignocellulosic feedstock matched the peak temperature of post-production analysis. The FTIR peaks attributable to the oxygen-containing functional groups dramatically diminished after 20 min residence time. Quantitative relationships were observed between parameters attributable to the aromatic characteristics: (1) baseline FTIR absorbance and (2) atomic H/C ratio with the fixed carbon content of biochar. Published by Elsevier B.V.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available