4.5 Article

Impaired Lysosomal Cobalamin Transport in Alzheimer's Disease

Journal

JOURNAL OF ALZHEIMERS DISEASE
Volume 43, Issue 3, Pages 1017-1030

Publisher

IOS PRESS
DOI: 10.3233/JAD-140681

Keywords

Alzheimer's disease; amyloid-beta; lysosomes; neurodegeneration; vitamin B12

Categories

Funding

  1. National Health and Medical Research Council (NHMRC) of Australia [1065982]
  2. Australian Postgraduate Award PhD scholarship
  3. NHMRC Senior Research Fellowship [630445]
  4. National Health and Medical Research Council of Australia [630445, 1065982] Funding Source: NHMRC

Ask authors/readers for more resources

Cobalamin (vitamin B12) is required for erythrocyte formation and DNA synthesis and it plays a crucial role in maintaining neurological function. As a coenzyme for methionine synthase and methylmalonyl-CoA mutase, cobalamin utilization depends on its efficient transit through the intracellular lysosomal compartment and subsequent delivery to the cytosol and mitochondria. Lysosomal function deteriorates in Alzheimer's disease (AD). Lysosomal acidification is defective in AD and lysosomal proteolysis is disrupted by AD-related presenilin 1 mutation. In this study, we propose that AD related lysosomal dysfunction may impair lysosomal cobalamin transport. The experiments use in vitro and in vivo models of AD to define how lysosomal dysfunction directly affects cobalamin utilization. SH-SY5Y-A beta PP mutant cells were treated with a proteasome inhibitor to induce lysosomal amyloid-beta accumulation. We metabolically labeled these cells with [Co-57] cobalamin and isolated purified lysosomes, mitochondria, and cytosol fractions. The results indicated that proteasome inhibition was associated with lysosomal amyloid-beta accumulation and a doubling of lysosomal [Co-57] cobalamin levels. We also used A beta PPxPS1 transgenic AD mice that were intraperitoneally injected with [Co-57] cobalamin. The amount of [Co-57] cobalamin in the major organs of these mice was measured and the subcellular [Co-57] cobalamin distribution in the brain was assessed. The results demonstrated that lysosomal [Co-57] cobalamin level was significantly increased by 56% in the A beta PPxPS1 AD mouse brains as compared to wild type control mice. Together these data provide evidence that lysosomal cobalamin may be impaired in AD in association with amyloid-beta accumulation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available