4.8 Review

Metal-organic framework composites: from fundamentals to applications

Journal

NANOSCALE
Volume 7, Issue 17, Pages 7482-7501

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c5nr00518c

Keywords

-

Funding

  1. Nanjing University of Posts AMP
  2. Telecommunications [NY213098]
  3. National Science Foundation of China [GZ213054]

Ask authors/readers for more resources

Metal-organic frameworks (MOFs) are a class of crystallized porous polymeric materials consisting of metal ions or clusters linked together by organic bridging ligands. Due to their permanent porosity, rich surface chemistry and tuneable pore sizes, MOFs have emerged as one type of important porous solid and have attracted intensive interests in catalysis, gas adsorption, separation and storage over the past two decades. When compared with pure MOFs, the combination of MOFs with functional species or matrix materials not only shows enhanced properties, but also broadens the applications of MOFs in new fields, such as bio-imaging, drug delivery and electrical catalysis, owing to the interactions of the functional species/matrix with the MOF structures. Although the synthesis, chemical modification and potential applications of MOFs have been reviewed previously, there is an increasing awareness on the synthesis and applications of their composites, which have rarely been reviewed. This review aims to fill this gap and discuss the fabrication, properties, and applications of MOF composites. The remaining challenges and future opportunities in this field, in terms of processing techniques, maximizing composite properties, and prospects for applications, have also been indicated.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available