4.7 Article

Selective laser melting of Ti6Al4V alloy for biomedical applications: Temperature monitoring and microstructural evolution

Journal

JOURNAL OF ALLOYS AND COMPOUNDS
Volume 583, Issue -, Pages 404-409

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.jallcom.2013.08.183

Keywords

Titanium alloys; Selective laser melting; Temperature monitoring; Heat treatment

Ask authors/readers for more resources

Selective laser melting (SLM) is a kind of additive manufacturing where parts are made directly from 3D CAD data layer-by-layer from powder material. SLM products are used in various industries including aerospace, automotive, electronic, chemical, biomedical and other high-tech areas. The properties of the parts produced by SLM depend strongly on the material nature, characteristics of each single track and each single layer, as well as the strength of the connections between them. Studying the temperature distribution during SLM is important because temperature gradient and heat transfer determine the microstructure and finally mechanical properties of the SLM part. In this study a CCD camera was applied for determination of the surface temperature distribution and the molten pool size of Ti6Al4V alloy. The investigation of the microstructure evolution after different heat treatments was carried out to determine the microstructure in terms of applicability for the biomedical industry. (C) 2013 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available