4.7 Article

Effect of rare earth substitution on properties of barium strontium titanate ceramic and its multiferroic composite with nickel cobalt ferrite

Journal

JOURNAL OF ALLOYS AND COMPOUNDS
Volume 617, Issue -, Pages 140-148

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.jallcom.2014.07.204

Keywords

Composite materials; Solid state reactions; Magnetostriction; Grain boundaries; Magnetic measurements

Funding

  1. Department of Science and Technology (DST), Government of India

Ask authors/readers for more resources

Effect of substitution of rare earth ions (Dy3+, Gd3+ and Sm3+) on various properties of Ba0.95Sr0.05TiO3 (BST) i.e. the composition Ba0.95-1.5xSr0.05RxTiO3 (where x = 0.00, 0.01, 0.02, 0.03 and R are rare earths Dy, Gd, Sm) and that of their multiferroic composite with Ni0.8Co0.2Fe2O4 (NCF) has been studied. Shifting of peaks corresponding to different compositions in the X-ray diffraction pattern confirmed the substitution of rare earth ions at both Ba2+ and Ti4+ sites in BST. It is clear from scanning electron microscopy (SEM) images that rare earth substitution in BST increases its grain size in both pure and composite samples. Substitution of rare earth ions results in increase in value of dielectric constant of pure and composite samples. Sm substitution in BST significantly decreases its Curie temperature. Dy substituted pure and composite samples possess superior ferroelectric properties as confirmed by polarization vs electric field (P-E) loops. Composite samples containing Dy, Gd and Sm substituted BST as ferroelectric phase possess lower values of remanent and saturation magnetizations in comparison to composite sample containing pure BST as ferroelectric phase (BSTC). Rare earth substituted composite samples possess higher value of magnetoelectric coefficient as compared to that for BSTC. (C) 2014 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available