4.7 Article

Graphene-Ag/ZnO nanocomposites as high performance photocatalysts under visible light irradiation

Journal

JOURNAL OF ALLOYS AND COMPOUNDS
Volume 577, Issue -, Pages 717-727

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.jallcom.2013.06.137

Keywords

Composite materials; Semiconductors; Chemical synthesis; Catalysis; Optical spectroscopy; X-ray diffraction

Funding

  1. Higher Education Commission (HEC) of Pakistan
  2. Natural Science Foundation of China [51072180]
  3. Fundamental Research Funds for the Central Universities [2009QNA4005]
  4. State Key Laboratory of Silicon Materials at Zhejiang University [SKL2009-14]

Ask authors/readers for more resources

Visible-light-responsive Graphene-Ag/ZnO nanocomposites were fabricated using a facile, one-pot, nontoxic solvothermal process for the photodegradation of organic dyes. During the solvothermal process reduction of graphene oxide and loading of Ag-doped ZnO nanoparticles on two-dimensional graphene sheets were achieved. Electron microscopy, Fourier transform infrared spectroscopy, energy dispersive X-ray analysis, BET surface area measurements, X-ray photoelectron spectroscopy and powder X-ray diffraction were used to confirm that the Ag-doped ZnO nanoparticles as randomly dispersed and effectively decorated on graphene sheets via covalent bonds between Zn and C atoms. Optical properties studied using UV-vis diffuse reflectance spectroscopy confirmed that the absorption edge of Ag-doped ZnO shifted to visible-light region with the incorporation of graphene. The as-synthesized Graphene-Ag/ZnO nanocomposites showed unprecedented photodecomposition efficiency compared to the Ag-doped ZnO, pristine ZnO and commercial ZnO under visible-light. The textile mill effluent containing organic substances was also treated using photocatalysis and the reduction in the chemical oxygen demand (COD) of the treated effluent revealed a complete destruction of the organic molecules along with colour removal. This dramatically enhanced photoactivity of the composite which is attributed to retarded charge recombination rate, great adsorption of dyes, enhanced visible light absorption and fast transfer processes. This research has the potential to provide new avenues for the in situ fabrication of the Graphene-Ag/ZnO composites as highly efficient photocatalysts. (C) 2013 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available