4.7 Article

Hierarchical CuO hollow microspheres: Controlled synthesis for enhanced lithium storage performance

Journal

JOURNAL OF ALLOYS AND COMPOUNDS
Volume 509, Issue 7, Pages 3367-3374

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.jallcom.2010.12.067

Keywords

Oxide materials; Chemical synthesis; Microstructure; X-ray diffraction; Transmission electron microscopy; Electrochemical behavior

Funding

  1. NSFC [20773132, 20771101, 20831004, 20903097]
  2. National Basic Research Program of China [2009CB939801, 2011CB935904]
  3. NSTPP [2009BAE89B00]
  4. FIPYT [2009HZ0004-1, 2008F3116]
  5. FJIRSM fund [SZD-09002-3, SZD09003-1, 2010KL002]

Ask authors/readers for more resources

In this work, hierarchical CuO hollow microspheres were hydrothermally prepared without use of any surfactants or templates. By controlling the formation reaction conditions and monitoring the relevant reaction processes using time-dependent experiments, it is demonstrated that hierarchical CuO microspheres with hollow interiors were formed through self-wrapping of a single layer of radically oriented CuO nanorods, and that hierarchical spheres could be tuned to show different morphologies and microstructures. As a consequence, the formation mechanism was proposed to proceed via a combined process of self-assembly and Ostwald's ripening. Further, these hollow microspheres were initiated as the anode material in lithium ion batteries, which showed excellent cycle performance and enhanced lithium storage capacity, most likely because of the synergetic effect of small diffusion lengths in building blocks of nanorods and proper void space that buffers the volume expansion. The strategy reported in this work is reproducible, which may help to significantly improve the electrochemical performance of transition metal oxide-based anode materials via designing the hollow structures necessary for developing lithium ion batteries and the relevant technologies. (C) 2010 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available