4.7 Article

Spherical granular structures of Ag/Co nanoparticles: Synthesis, characterization and magnetic properties

Journal

JOURNAL OF ALLOYS AND COMPOUNDS
Volume 509, Issue 9, Pages 3880-3885

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.jallcom.2010.12.141

Keywords

Colloidal nanoparticles; Bimetallic; Ag/Co; Granular alloys; Spherical aggregates; Polyol process

Funding

  1. Defence Research and Development Organization (DRDO), Government of India

Ask authors/readers for more resources

Ag/Co bimetallic nanoparticles in the form of hierarchical spherical structures were prepared by the polyol process using oleic acid and oleylamine as surfactants. The Ag/Co nanoparticles so obtained were characterized by X-ray diffraction (XRD), field-emission scanning electron microscope (FESEM), transmission electron microscope (TEM), UV-vis spectroscopy (UV-Vis), small angle X-ray scattering (SAXS), vibrating sample magnetometer (VSM) and super-conducting quantum interference device (SQUID). The XRD results in complement with the UV-vis studies indicated the absence of Ag-Co alloy formation during the synthesis. The FESEM observations depicted dense and uniform spherical granular structures for the Ag/Co nanoparticles; while the TEM studies apparently revealed a bimodal distribution of nanoparticles exist in the Ag/Co samples. The SAXS analysis on the Ag/Co colloids further validated the TEM results. The VSM studies showed typical ferromagnetic characteristics for the Ag/Co nanoparticles at room temperature; whereas the SQUID measurements demonstrated superparamagnetic nature for these nanoclusters with a blocking temperature close to 250 K. The synthetic route presented in this work represents a simple means of producing bimetallic composite superstructures of Ag/Co nanoparticles in the form of spherical granules on a large scale. These spherical aggregates have the potential to be important building blocks for more complex nanostructures and would be interesting for magnetic studies and catalytic applications. (C) 2010 Elsevier B. V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available