4.7 Article

Comparisons of metallic clusters imbedded in the surface oxide of AB2, AB5, and A2B7 alloys

Journal

JOURNAL OF ALLOYS AND COMPOUNDS
Volume 506, Issue 2, Pages 831-840

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.jallcom.2010.07.086

Keywords

Hydrogen absorbing materials; Transition metal alloys; Metal hydride electrode; Electrochemical reactions

Ask authors/readers for more resources

In order to clarify the relationship between the saturation magnetization of the activated metal hydride material and electrode performance, the specific power measured at both low temperature (-30 degrees C) and operating temperature (35 degrees C) of a nickel metal hydride battery were compared with magnetization measurements. It is found specific powers measured at both temperatures correlate well with the saturated magnetic susceptibility, which is proportional to the total amount of metallic nickel clusters distributed within the surface oxide layer after activation. Both the gas phase storage and electrochemical properties of the activated AB(2), AB(5), and A(2)B(7) alloys were investigated. While the AB(2) alloy has the highest storage capacity, it also has the lowest high-rate dischargeability among the three alloys. This suggests a competition between storage capacity and rate capability in these materials. In an alkaline etching experiment, it is established the saturation magnetization increases with etching time in these AB(2), AB(5), and A(2)B(7) alloys. The saturation magnetization after a 4 h etches track the changes in the high-rate dischargeability. The increase is attributed to the growth in size of the metallic inclusions for the AB(2) and Nd-A(2)B(7) samples, and from an increase in the number of metallic inclusion in the case of AB(5) and La-A(2)B(7). Transmission electron microscope studies calibrate the size inferred from magnetic susceptibility studies and also the Ni-dominated FCC structure of the metallic clusters. (C) 2010 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available