4.7 Article

Microstructure evolution and wear properties of in situ synthesized TiB2 and TiC reinforced steel matrix composites

Journal

JOURNAL OF ALLOYS AND COMPOUNDS
Volume 459, Issue 1-2, Pages 491-497

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.jallcom.2007.05.018

Keywords

reactive sintering; in situ; TiB2; TiC; steel matrix composite; wear

Ask authors/readers for more resources

Steel matrix composite reinforced with TiB2 and TiC reinforcements (30 to 70wt%) have been produced through the synthesis reaction from Ti, C and FeB. The sintered composites were characterized by X-ray diffraction and scanning electron microscopy. TiB2, TiC and steel were detected by X-ray diffraction analysis. The scanning electron micrographs revealed the morphology and distribution of the reinforcements. TiB2 and TiC were thermally stable in the steel matrix. The results showed that different mechanisms of evolution of reinforcements in steel matrix were operative. TiB2 grew in hexagonal prismatic or rectangular shape and TiC in spherical shape. The reciprocating sliding wear test was conducted on the composite. The results of sliding wear showed that the wear loss decreased with increase in the reinforcement content. The wear mechanisms were polishing wear and microploughing for the composites containing high volume fraction of the reinforcements, whereas microploughing and grooving were the dominant wear mechanisms for the composites containing low volume fraction of the reinforcements. (C) 2007 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available