4.7 Article

Single-wall carbon nanotube (SWCNT) functionalized Sn-Ag-Cu lead-free composite solders

Journal

JOURNAL OF ALLOYS AND COMPOUNDS
Volume 450, Issue 1-2, Pages 229-237

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.jallcom.2006.10.123

Keywords

single-wall carbon nanotubes (SWCNTs); Sn-3.8Ag-0.7Cu solder alloy; hardness; fracture analysis

Ask authors/readers for more resources

Sn-3.8Ag-0.7Cu-based composite solders functionalized with single-wall carbon nanotubes (SWCNTs) with various weight proportions ranging from 0.01 to 1 wt% were successfully produced. The microstuctural, melting and mechanical properties of Sn-3.8Ag-0.7Cu-based composite solders were evaluated as a function of different wt% of SWCNT addition. The microstructures of the composite specimens were studied by means of field-emission scanning electron microscope (FE-SEM). It was observed that SWCNTs were homogeneously distributed at the edges of Ag3Sn compounds that are distributed evenly in the beta-Sn solder matrix. Energy dispersion X-ray (EDX) analysis method was employed to reveal the presence of the phases existed in the solder composites. The mechanical properties of the composite solders were evaluated by Vickers-microhardness measurements and tensile tests performed at room temperature. The different wt% and addition of SWCNTs to Sn-3.8Ag-0.7Cu produced a dramatic increase in tensile strength, hardness, and better melting characteristics. A slight decrease in elongation to failure was observed. FE-SEM observations of the fracture surface, revealed the overall failure mechanism as the ductile manner of failure. (c) 2006 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available