4.8 Article

2D vanadium doped manganese dioxides nanosheets for pseudocapacitive energy storage

Journal

NANOSCALE
Volume 7, Issue 38, Pages 16094-16099

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c5nr04682c

Keywords

-

Funding

  1. National Natural Science Foundation of China [51322210, 61434001]
  2. Director Fund of WNLO
  3. China Postdoctoral Science Foundation [2014M550390]

Ask authors/readers for more resources

Ultrathin two-dimensional (2D) crystals have been predicted to have high electrochemical activity because nearly all active atoms are exposed to the electrolytes, which offers great potential for energy storage. However, to construct layered structure metal oxides, simplifying the synthetic methods and improving the electronic conductivity remain a challenge. Herein, we synthesized 2D vanadium doped manganese oxides through a facile hydrothermal method. Vanadium dopant is also used as a template agent for the formation of nanosheet-shaped MnO2, further leading to high specific surface area as well as significant enhancement of the electronic conductivity, as confirmed by the first-principle calculations and four-point probe method. For the sake of a shortened ion transport distance and enhanced electronic conductivity, V-doped MnO2 nanosheets display an excellent electrochemical performance as a supercapacitor electrode.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available