4.8 Review

Core-crosslinked polymeric micelles: Principles, preparation, biomedical applications and clinical translation

Journal

NANO TODAY
Volume 10, Issue 1, Pages 93-117

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.nantod.2015.01.005

Keywords

Nanomedicine; Drug targeting; EPR; Micelle; Polymer; Core-crosslinking

Funding

  1. European Research Council (ERC) [309495: NeoNaNo]
  2. European Union's 7th Framework Programme [COST-Action TD1004]
  3. German Research Foundation [DFG: LA2937/1-2, SFB1066-1]
  4. Juan de la Cierva program of the Spanish Ministry of Education [JCI-2012-13159]

Ask authors/readers for more resources

Polymeric micelles (PM) are extensively used to improve the delivery of hydrophobic drugs. Many different PM have been designed and evaluated over the years, and some of them have steadily progressed through clinical trials. Increasing evidence suggests, however, that for prolonged circulation times and for efficient EPR-mediated drug targeting to tumors and to sites of inflammation, PM need to be stabilized, to prevent premature disintegration. Core-crosslinking is among the most popular methods to improve the In vivo stability of PM, and a number of core-crosslinked polymeric micelles (CCPM) have demonstrated promising efficacy in animal models. The latter is particularly true for CCPM in which (pro-) drugs are covalently entrapped. This ensures proper drug retention in the micelles during systemic circulation, efficient drug delivery to pathological sites via EPR, and tailorable drug release kinetics at the target site. We here summarize recent advances in the CCPM field, addressing the chemistry involved in preparing them, their in vitro and in vivo performance, potential biomedical applications, and guidelines for efficient clinical translation. (C) 2015 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available