4.8 Article

Controlled Prelithiation of Silicon Monoxide for High Performance Lithium-Ion Rechargeable Full Cells

Journal

NANO LETTERS
Volume 16, Issue 1, Pages 282-288

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.nanolett.5b03776

Keywords

Coulombic efficiency; cycle life; full cell; prelithiation; silicon monoxide

Funding

  1. National Research Foundation of Korea (NRF) - Korea government (MEST) [NRF-2012-R1A2A1A01011970, NRF-2014R1A4A1003712]
  2. NPRP from the Qatar National Research Fund [NPRP 7-301-2-126]
  3. Research and Development Program of the Korea Institute of Energy Research (KIER) [B5-2442-05]

Ask authors/readers for more resources

Despite the recent considerable progress, the reversibility and cycle life of silicon anodes in lithium-ion batteries are yet to be improved further to meet the commercial standards. The current major industry, instead, adopts silicon monoxide (SiOx, x approximate to 11), as this phase can accommodate the volume change of embedded Si nanodomains via the silicon oxide matrix. However, the poor Coulombic efficiencies (CEs) in the early period of cycling limit the content of SiOx, usually below 10 wt % in a composite electrode with graphite. Here, we introduce a scalable but delicate prelithiation scheme based on electrical shorting with lithium metal foil. The accurate shorting time and voltage monitoring allow a fine-tuning on the degree of prelithiation without lithium plating, to a level that the CEs in the first three cycles reach 94.9%, 95.7%, and 97.2%. The excellent reversibility enables robust full-cell operations in pairing with an emerging nickel-rich layered cathode, Li[Ni0.8Co0.15Al0.05] O-2, even at a commercial level of initial areal capacity of 2.4 mAh cm(-2), leading to a full cell energy density 1.5-times as high as that of graphite-LiCoO2 counterpart in terms of the active material weight.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available