4.5 Article

Flutter of Aircraft Wings Carrying a Powered Engine Under Roll Maneuver

Journal

JOURNAL OF AIRCRAFT
Volume 48, Issue 3, Pages 874-883

Publisher

AMER INST AERONAUTICS ASTRONAUTICS
DOI: 10.2514/1.C031080

Keywords

-

Funding

  1. Directorate For Engineering
  2. Div Of Civil, Mechanical, & Manufact Inn [1031036] Funding Source: National Science Foundation

Ask authors/readers for more resources

The flutter analysis of a swept aircraft wing-store configuration subjected to follower force and undergoing a roll maneuver is presented. Concentrated mass, follower force, and roll angular velocity terms are combined in the governing equations, which are obtained using the Hamilton's variational principle. The wing is modeled from a classical beam theory and incorporates bending-torsion flexibility. Heaviside and Dirac delta functions are used to consider the location and properties of the external mass and the follower force. Also, Peters's unsteady aerodynamic pressure loadings is considered and modified to take into account the effect of the wing sweep angle. The extended Galerkin's method is applied to convert the partial differential equations into a set of ordinary differential equations. Numerical simulations are validated with available published results. Simulation results are presented to show the effects on the wing flutter of the roll angular velocity, sweep angle, follower force, and store mass and its location. Results are indicative of the significant effect of the rigid-body roll angular velocity and the follower force on the wing-store dynamic stability. Furthermore, it is shown that the distances between the wing root and the aircraft center of gravity, acting location of the roll angular velocity, considerably affects the wing-engine flutter speed and frequency.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available